Turbulent Flow Rate Calculator

Turbulent Flow Rate Calculator

The Smartflow™ Reynolds number calculator is provided as a service to the injection molding community as an easy-to-use online resource. In the development of our calculator special attention was focused on being capable of calculating values at elevated water temperatures. This functionality will be very useful to our industry given the rapidly growing use of pressurized mold temperature controllers, operating at temperatures up to 350°C (662°F).

Enter Water Temperature:

°F °C

Enter Ethylene Glycol Percentage:

Use of Ethylene Glycol not recommended above 150°F/65°C. Refer to User Guidelines for details.

Warning--This combination of temperature and Ethylene-Glycol concentration is subject to freezing at standard atmospheric pressure.

Warning--This combination of temperature and Ethylene-Glycol concentration is subject to boiling at standard atmospheric pressure.

Warning--This combination of temperature and Ethylene-Glycol concentration results in an out-of-bounds error.

At coolant temperatures of 212°F/100°C up to 30% Ethylene Glycol concentration the solution is subject to boiling at standard atmospheric pressure.

Invalid Selection

Enter Hydraulic Diameter:

inches mm

Click here for NPT tap drill chart.here for BSP tap drill chart. Click this link to download the Calculating Hydraulic Diameter document (PDF)

Coolant Flow Rate:

GPMLPM

Enter Reynolds Number:


Steel Temperature vs. Coolant Flow

Turbulent Flow Basics

In a mold cooling system Turbulent water flow is much more efficient at removing heat than laminar flow. After turbulent flow is achieved, increasing the flow rate further yields more cooling benefit, but at a declining rate compared to water flow rate. The graph of "Steel Temperature vs. Coolant Flow" illustrates this point.

Often mold operators try to maximize the flow of water through their cooling systems to ensure turbulent flow. Doing so increases energy costs for pumping more water than may be necessary. This practice can also limit the amount of cooling water available for cooling other molds on the same cooling system circuit. A better practice is to ensure turbulent flow and sufficient cooling by using flow meters and FCI (Fluid Characteristic Indication) Technology. In this way an efficient cooling process can be realized using the minimum pumping capacity and energy.

turbulent flow